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Phase-space structure of a new integrable system related to
hydrogen atoms in external fields

M J Rakovíc†‡ and Shih-I Chu†
† Kansas Institute for Theoretical and Computational Science and Department of Chemistry,
University of Kansas, Lawrence, KS 66045, USA
‡ Institute of Physics, University of Belgrade, PO Box 57, 11001 Belgrade, Yugoslavia

Received 14 May 1996

Abstract. We explore the detailed topological structure of the phase-space of the recently
discovered three-dimensional integrable but nonseparable Hamiltonian system with velocity
dependent potential. Two three-parameter families of three-dimensional tori which foliate the
phase-space are identified. The complete classification, according to their topology, of the
level sets corresponding to the critical points of the energy-momentum map, is accomplished.
The relationship of the three-dimensional integrable system with important physical systems
of current interest, namely, the hydrogen atoms in circularly polarized (CP) fields, in crossed
magnetic and electric fields and in crossed magnetic and CP fields, is discussed.

1. Introduction

In a recent paper, Raković and Chu (1995a), we have shown that the three-dimensional
dynamical system defined with the Hamiltonian function with velocity dependent potential:

H = p2

2
− 1

r
− ωlz + f x + ω2

18
(r2 + 3z2) (1)

is integrable. The integrability follows from the existance of two additional independent
integrals of motion which are in involution:

H1 = 4

3
ωlz(H − f x) + 8

9
ω2l2

z + f
(
lypz − lzpy + x
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)
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H2 = ω
(
lxpy − lypx + z

r

)
+ 1

9
ω3z(x2 + y2) − 3

2
f lx − 1

2
ωf xz. (3)

This dynamical system is a rare example of an integrable but not separable Hamiltonian
system which is, at the same time, related to important realistic systems: hydrogen atoms
in circularly polarized (CP) microwave fields and hydrogen atoms in crossed magnetic and
electric fields. Our goal in this paper is to explore the topological structure of the phase-
space which corresponds to the Hamiltonian functionH , or more precisely, to decompose
the phase-space into irreducible sets invariant under motions generated by all three functions,
equations (1)–(3), treated as Hamiltonian functions.

The functionsH , H1 and H2 formally depend on two external parameters,f and ω,
however, the topological structure of the phase-space depends only on a certain combination
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734 M J Raković and S-I Chu

of the parameters due to the following scaling property. If one introduces the scaled
canonical coordinatesrs = ω2/3r, ps = ω−1/3p and the parameterfs = ω−4/3f , then
the scaled Hamiltonian functionsHs = ω−2/3H , H1s = ω−4/3H1 and H2s = ω−1H2 have
the same functional forms as in equations (1)–(3) with the replacementω = 1. Therefore, the
topological structure of the phase-space depends only on the scaled parameterfs = ω−4/3f

(and not independently onf and ω). Throughout this paper we shall only use scaled
variables (or equivalently we setω = 1 andf = fs) while omitting the subscripts.

The plan of the paper is the following. In section 2 we recall some basic mathematical
notions. In section 3 we study important reduced two-dimensional system which describes
the motion in the planez = 0, while in section 4 we study the full three-dimensional system.
Finally, in section 5, we discuss the relationship between our integrable system and some
realistic physical systems.

2. Some basic mathematical notions

To facilitate the discussion below, we shall first recall basic notions concerning integrable
systems. We closely follow the book by Arnol’d (1978). More advanced treatment of
integrable systems from algebraic and geometrical points of view can be found e.g. in the
books by Perelomov (1990) and Fomenko (1988).

An n-dimensional dynamical system with the phase-spaceP , (local) canonical
coordinates(q, p) = (ξ1, . . . , ξ2n) = ξ and the Hamiltonian functionH(ξ) is integrable
if it possessesn independent integrals of motionH1(ξ), . . . , Hn(ξ) = H(ξ) which are in
involution. Each integral of motion–Hamiltonian functionHi , i = 1, . . . , n, is a generator
of the Hamiltonian vector fieldXi = (∂Hi/∂p, −∂Hi/∂q)T , and one-parameter groupgt

i

of the phase-space transformations (diffeomorphisms). The composition of these groups
gt1,...,tn = g

t1
1 ◦ . . .◦gtn

n is n-parameter group of the phase-space transformations (and defines
an action of the Abelian groupRn on the phase-spaceP ). The energy-momentum map is:

EM : P → Rn : (ξ1, . . . , ξ2n) → (H1(ξ), . . . , Hn(ξ)) EM(P ) = Q (4)

where Q ⊂ Rn is the image of the phase-spaceP under energy-momentum map. The
phase-space decomposes into a disjoint union of the level sets of the energy-momentum
map:

P =
⋃

µC C = (C1, . . . , Cn) ∈ Q

µC = {ξ : Hi(ξ) = Ci, i = 1, . . . , n} = EM−1(C).
(5)

Each level setµC is invariant under the action of the groupg, but (in general) as not
irreducible, i.e. it further decomposes into a disjoint union of orbits of the groupg:

µC =
⋃

Oξ ξ ∈ µC Oξ = {gt1,...,tn (ξ) : −∞ < ti < ∞}. (6)

The orbitsOξ are the minimal invariant sets (smooth manifolds) under the action of the
group g. The dimension of the orbit is determined by the rank of the differential of the
energy-momentum map:

dim(Oξ ) = rank(dEM(ξ)) = rank(M(ξ)) 6 n M = [∂Hi/∂ξj ]
n×2n

. (7)

According to the Liouville’s theorem, if dim(Oξ ) = rank(M(ξ)) = k 6 n, then, for some
k1 6 k

Oξ
∼= S1 × · · · × S1 × R × · · · × R ∼= T k1 × Rk−k1. (8)

In particular, if the orbit is compact thenOξ
∼= T k, i.e. the orbit is diffeomorphic to

k-dimensional torus.
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The point C is said to beregular if it is a regular value of the energy-momentum
mapEM, i.e. if at eachξ ∈ µC , vector fieldsXi are linearly independent or equivalently,
rank(M(ξ)) = n. If the corresponding setµC is disconnected then each of its connected
components is ann-dimensional orbit of the groupg. The pointC is critical if at some
phase-space point(s) (belonging toµC) vector fieldsXi are linearly dependent, i.e. in the
decomposition (6) of the level setµC of the critical point, at least one of the orbits consists
of the phase-space points for which rank(M(ξ)) = k < n and is thereforek-dimensional.
We shall say that such an orbit is also critical.

3. Phase-space structure of reduced two-dimensional system

The Hamiltonian functionH , equation (1), possesses one geometrical symmetry. It is
invariant under reflections with respect to the four-dimensional planez = 0, pz = 0.
From the equations of motion one easily verifies that the same plane is invariant under the
motion generated by the Hamiltonian functionsH and H1, equations (1) and (2). (From
equation (3) it follows that this plane corresponds to the zero value of the Hamiltonian
function H2: z = 0, pz = 0 ⇒ H2 = 0.) This leads to the definition of the (reduced) two-
dimensional integrable system with two commuting and independent Hamiltonian functions:

H ′ = p2
x + p2

y

2
− 1

(x2 + y2)1/2
− lz + fsx + 1

18
(x2 + y2) (9)

H ′
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3
lz(H
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9
l2
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2
f 2

s y2

+fs

3
(3xlz − py(x

2 + y2)) − fs

9
x(x2 + y2). (10)

In this section we shall study this reduced two-dimensional system. It is a good starting
point for understanding of the full three-dimensional system to which we shall return in
the next section. Anyway, the Hamiltonian functionH ′ corresponds to a special case of an
interesting realistic system (see section 5).

In this case the phase-space isP ′ = {(x, y, px, py)}, its image under the energy-
momentum map isQ′ = EM(P ′), Q′

r and Q′
cr = Q′ \ Q′

r are the sets of all regular
and critical points respectively. The point(E, C1) ∈ Q′ (E andC1 are fixed values ofH ′

andH ′
1) is critical if the corresponding level setµE,C1 contains at least one critical orbit of

the two-parameter groupg′ (generated byH ′ andH ′
1) of a lower dimension than two. If the

point (E, C1) is regular thenµE,C1 is a disjoint union of a finite number of two-dimensional
smooth manifolds—orbits of the groupg′.

3.1. Critical points

Shown in figures 1(a) and (b) are the plots of the setQ′
cr of critical points for two

different values of the parameterfs = 2.67 and fs = 0.5. It appears that these are
only two topologically different cases, i.e. whenfs > ( 4

9)2/3 the plots of critical points are
homeomorphic to the one in figure 1(a), while if fs 6 ( 4

9)2/3 they are homeomorphic to
the plot in figure 1(b). In the first case the setQ′

r of regular points consists of four open
connected componentsQ′

1, Q
′
2, Q

′
3 and Q′

4 while in the second case only the first three
exist. The shaded regions in figures 1(a) and (b) do not belong toQ′. It is convenient
to distinguish two pointsF+ and F− in Q′

cr and to decompose the rest of the set into
nine curvesθ−

1 , θ−
2 , ε+, θ+

1 , θ+
2 , θ+

3 , θ+
4 , ε−

2 andε−
1 in the first case (figure 1(a)) or into six
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Figure 1. The plots of the sets of critical pointsQ′
cr for (a) fs = 2.67 and (b) fs = 0.5.

curvesθ−
1 , θ−

2 , ε+, θ+
1 , θ+

2 andε−
1 in the second case (figure 1(b)). By definition the points

A−, A+ andB belong toθ−
2 , θ+

2 and θ+
3 resepectively. This decomposition is dictated by

the topological structure of the level sets, i.e. the level sets of critical points which belong
to the same curve are mutually diffeomorphic. Analogously, the level sets of regular points
which belong to the same componentQ′

i of the setQ′
r are mutually diffeomorphic. We

shall now give analytical expressions for the critical points and corresponding critical orbits
of the groupg′. Then we shall consider the level sets of the points, both regular and critical,
that belong to different regions in figure 1(a).

3.2. Zero-dimensional orbits

The critical pointsF+ andF− correspond to only two fixed points (denoted also withF±)
of both Hamiltonian functionsH ′ andH ′

1, i.e. to zero-dimensional orbits of the groupg′.
Their locations in the phase-spaceP ′ are

xF± = ∓r± yF± = 0 pxF± = 0 pyF± = xF± (11)

wherer± is the positive root of the cubic equation

8r3/9 ± fsr
2 − 1 = 0. (12)
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The corresponding values of the Hamiltonian functionsH ′ andH ′
1 are

EF± = (−3 ∓ fsr±2)/(2r±) C1F± = −fs
2r±2/8 − r± ∓ 7fs/8. (13)

In the limit of the static field whenfs → ∞ (i.e. whenω → 0 andf is finite) the fixed
point F+ corresponds to the Stark saddle point whileF− becomes imaginary.

3.3. One-dimensional orbits

The curvesθ−
1 , θ−

2 , θ+
1 , θ+

2 , θ+
3 andθ+

4 are all determined by the same pair of equations:

E = −2θ/3 + 9fs
2/8 − 1/(2θ2) C1 = −2θ2/9 − 2/(3θ) (14)

and each has its own range of the parametarθ :

−∞ < θ−
2 6 θA− < θ−

1 < 0 < θ+
1 < θF+

θF+ < θ+
2 6 θA+ < θ+

3 6 θB < θ+
4 < θF− if fs > ( 4

9)2/3

θF+ < θ+
2 < θF− if fs 6 ( 4

9)2/3

(15)

where

θF± = ∓3fsr±/4 − r±2/3 + ((∓3fsr±/4 − r±2/3)
2 + r±)

1/2

θA± = ±2/(3fs) θB = ( 3
2)

1/3
.

(16)

The triangleA+BF− exists only forfs > ( 4
9)2/3. For fs = ( 4

9)2/3 it contracts to a point
F−. The points belonging to these curves are critical, and the corresponding level sets
contain one-dimensional critical orbits of the groupg′. Given the value of the parameter
θ , the locations in the phase-spaceP ′ of these orbits are given in polar coordinates
(x = ρ cosφ, y = ρ sinφ) with:

θρ2 − ρ(( 9
4)fsθ cosφ + 3

2) + 3θ2/2 = 0 pρ = ( 3
2)fs sinφ pφ = θ + ρ2/3. (17)

The last equation defines exactly one orbit diffeomorphic to circle whenθ < 0 or when
θF+ < θ < θF− . For θ = θF− the circle contracts to the (stable) fixed pointF−, see
equations (11)–(13). When 0< θ < θF+ equation (17) defines two disjoint orbits-circles.
All these one-dimensional critical orbits of the groupg′ are at the same time periodic orbits
of the Hamiltonian functionH ′.

It appears that the level sets of the points from the curvesθ−
1 , θ−

2 , θ+
3 andθ+

4 contain,
besides critical also some two-dimensional orbits, while the level sets of the points from
curvesθ+

1 andθ+
2 consist of only critical one-dimensional orbits defined by equation (17).

Two periodic orbits (i.e. the level set) corresponding to one of the critical points from
the curveθ+

1 are given in figure 2(b). The level sets of all other points from the curve
θ+

1 have the same topological structure. These two periodic orbits meet at the point of
bifurcationF+ which corresponds to the fixed point (ofH ′) (see equations (11)–(13)), i.e.
the solution of equation (17) forθ = θF+ is represented by the disjoint union of one zero-
dimensional orbit—unstable fixed pointF+, and two one-dimensional orbits (of the group
g′) diffeomorphic to real lineR. These two critical orbits constitute what is known as stable
and unstable manifold of unstable fixed pointF+. The plot of the level set of critical point
F+ is given in figure 2(c). The plot of the level set—periodic orbit corresponding to one
of the critical points from curveθ+

2 is given in figure 3(b).
The curveε+ in figures 1(a) and (b) is determined with

C1 = −E2/2 + fs EF+ < E < EA− = 4/(9fs). (18)
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Figure 2. (b) The projection on thex–y plane of the level set of one of the critical points from
the curveθ+

1 whose location is shown in (a). (c) The same as in (b) for the critical pointF+.

For ε−
1 andε−

2 we have

C1 = −E2/2 − fs EA+ = −4/(9fs) < Eε−
2

< EF− < Eε−
1

< ∞. (19)

Note thatε−
2 exists only whenfs > ( 4

9)2/3. Any given point from the curveε+ where energy
E corresponds exactly to one one-dimensional critical orbit of the groupg′ diffeomorphic
to circle (periodic orbit of the Hamiltonian functionsH ′) whose location in the phase-space
is given (again in polar coordinates) by:

±( 4
3)(2ρ)1/2(1 − fsρ

2)1/2 sin(φ/2) − 2fsρ sin2(φ/2) + 4ρ2/9 − E = 0

pρ = ±(2(1 − fsρ
2)/ρ)1/2 cos(φ/2).

(20)

The expression (rather complicated) for the momentumpφ as a function ofρ, φ andpρ can
easily be obtained from equations (9), (10) and (18).

Similarly, the one-dimensional orbits corresponding to critical points from the curves
ε−

1 andε−
2 are determined by the equations:

±( 4
3)(2ρ)1/2(1 + fsρ

2)1/2 cos(φ/2) + 2fsρ cos2(φ/2) + 4ρ2/9 − E = 0

pρ = ∓(2(1 + fsρ
2)/ρ)1/2 sin(φ/2).

(21)

For each energyE from interval (EA+ , EF−), i.e. for the points fromε−
2 the solution of

the last equation coincides with the entire level set which consists of two disjoint periodic
orbits of H ′. The plot of the level set of one of the points from the curveε−

2 is given in
figure 3(c). For E = EF− one of these circles contracts into the stable fixed pointF−, see
figure 3(d), and forE > EF− (curveε−

1 ) the solution of equation (21) is only one periodic
orbit.
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Figure 3. The projections on thex–y plane of the periodic trajectories of the Hamiltonian
function H which correspond to the critical point: (b) from the curveθ+

2 , (c) from the curve
ε−

2 , (d) F−. The locations of the points are given in (a).

In summary, we note that the pointsF+, F−, A+, A− and B can all be seen as the
bifurcation points of certain periodic orbits. For example, we see (figures 2 and 3) that
two periodic orbits which constitute the level set of the critical point fromθ+

1 bifurcate to
a single periodic orbit when corresponding critical point moves acrossF+ into θ+

2 , or they
bifurcate to another periodic orbit if the critical point moves intoε+. The stability of these
periodic orbits is discussed in the following subsection.

3.4. Level sets

The Hamiltonian functionH ′ allows only bounded motions and almost all its orbits are
concentrated in the corresponding orbits of the groupg′. Therefore, the level set of any
regular point is a disjoint union of finite number (> 1) of two-dimensional orbits (ofg′)
diffeomorphic to tori. The phase-space is foliated with the finite number of two-parameter
families of nested tori. In our case there are four such families denoted byw′

i , i = 1, . . . , 4
whose relation to the regular setsQ′

i is now described.
The setQ′

1 corresponds to two familiesw′
1 andw′

2 and figure 4 shows the level set of one
regular point fromQ′

1. We are using the semiparabolic coordinatesx = (u2−v2)/2, y = uv.
In these coordinates the phase-space is the quotient space of the spaceR4 = {(u, v, pu, pv)}
defined with the identification(u, v, pu, pv) ≡ (−u, −v, −pu, −pv).

At this point we shall briefly discuss the Coulomb singularity of dynamical system
defined by equation (9). As seen in figure 4, the regular points from the setQ′

1 indeed
correspond to two-dimensional tori. However, these tori actually belong to a regularized
dynamical system which is formally obtained with the use of the coordinate transformation
(x, y) → (u, v). This transformation is singular at the origin of the configurational space, i.e.
for x = y = 0 (or u = v = 0). If we transform the tori from figure 4 back to the Cartesian
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Figure 4. The level set of the regular point from the setQ′
1 for the casefs = 2.67. (a) The

location of the regular point. (b) The surface of section (SOS) of the level set defined with
u = 0. (c) The projection, on theu–v plane, of two invariant toriw′

1 andw′
2.

coordinates, the resulting two-dimensional manifolds which correspond to nonregularized
system will have singularities at the origin, i.e. they will not be diffeomorphic to tori. There-
fore, all our statements about topology of the level sets hold only for the regularized system.

The tori fromw′
1 andw′

2 are nested in such a way that they encircle one-dimensional
orbits (of the groupg′) corresponding to the critical curveθ+

1 , figure 2(b). We now see that
these orbits are stable periodic orbits of the Hamiltonian functionH ′.

Figures 5(b) and (d) show that each level set along the critical curveθ−
1 is a disjoint

union of one one-dimensional orbit of the groupg′ (stable periodic orbit ofH ′, equation (17),
encircled with the tori of the familyw′

1) and a torus fromw′
2. Therefore the regular setQ′

2
corresponds only to the family of toriw′

2, figures 5(c) and (e).
Two families of tori w′

1 and w′
2 merge into each other along the critical curveε+,

figure 6, and bifurcate into a new single family of toriw′
3 which corresponds to the regular

set Q′
3, figure 8. The level set of each point from the critical curveε+ is separatrix

i.e. it contains one closed one-dimensional orbit of the groupg′ and two two-dimensional
noncompact orbits, both diffeomorphic to cylinders. The closed orbit, equation (20), is an
unstable periodic orbit ofH ′, and the entire separatrix is at the same time its stable and
unstable manifold.

The family w′
2 bifurcates into familyw′

3 also along the critical curveθ−
2 . Figure 7

shows an example of the separatrix (corresponding to a point fromθ−
2 ) which contains one

unstable periodic orbit ofH ′, equation (17), and one two-dimensional noncompact orbit of
the groupg′ diffeomorphic to cylinder.
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Figure 5. The same as in figure 4 but for the critical point from the curveθ−
1 , (b), (d), and for

the regular point fromQ′
2, (c), (e).

The regular setQ′
4 corresponds to two families of tori,w′

3 and w′
4, see figures 9(a),

(c) and (e). These two families ‘meet’ along the critical curveθ+
3 and form the separatices

shown in figure 10. On the other hand, the level set of the point from the critical curveθ+
4 ,

figures 9(a), (b) and (d) are a disjoint union of a torus fromw′
3 and a stable periodic orbit

of H ′, equation (17), encircled with the tori of the familyw′
4.

Finally, the periodic orbits ofH ′ corresponding to the critical curvesθ+
2 , equation (17),

and ε−
1 , equation (21), are encircled with the tori from the familyw′

3 while two orbits
corresponding toε−

2 , figure 3(c), are encircled, one with the tori fromw′
3 and another with

the tori fromw′
4. All of these orbits are therefore stable.

4. Phase-space structure of the three-dimensional system

In this section, we consider the topological structure of the full three-dimensional system
H . In this case the setQ = EM(P ) = Qr

⋃
Qcr is a three-dimensional subset of the

spaceR3 = {(E, C1, C2)}. The point(E, C1, C2) ∈ Q is critical if the corresponding level
set µE,C1,C2 contains at least one critical orbit of the three-parameter groupg (generated
by H , H1 and H2). If the point (E, C1, C2) is regular thenµE,C1,C2 is a disjoint union
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Figure 6. The level set of the critical point from the curveε+ for the casefs = 2.67. (a)
The location of the critical point. (b) The SOS of the level set defined withu = 0. (c) The
projection, on theu–v plane, of the unstable periodic orbit which belongs to the level set. Two
orbits should be identified because(u, v, pu, pv) ≡ (−u, −v, −pu, −pv). (d) The projection,
on theu–v plane, of the level set (separatrix).

of a finite number of three-dimensional smooth manifolds—orbits of the groupg, which
are diffeomorphic to the three-dimensional tori. Again, as in the previous section, all these
statements actually hold for the regularized system. In the three-dimensional case, the
regularization is more complicated and can be accomplished by using the Kustaanheimo–
Stiefel transformation (Stiefel and Scheifele (1971)).

4.1. Critical points

The most convenient way to represent setsQr andQcr is to give plots of their intersections
with various planes of the spaceR3 = {(E, C1, C2)} defined by fixing the third integralC2.
Such intersections belong to (for given value of the parameterfs) five different topological
classes. The first class consists of only one element: it is the intersection ofQ with the plane
C2 = 0. The second class of topologically equivalent sets contains the intersections ofQ

with the planes for which 0< |C2| 6 1, while the third, fourth and fifth classes contain the
intersections ofQ with the planes for which 1< |C2| < C2G (whereC2G = C2G(fs), see
the first paragraph after equation (27)),|C2| = C2G and |C2| > C2G, respectively. Again,
like in the two-dimensional case the intersection ofQ with the planeC2 = 0 has two
different structures depending on whetherfs > ( 4

9)2/3 or fs 6 ( 4
9)2/3, while the topological

structure of the intersections ofQ with the planesC2 6= 0 does not depend onfs . Note that
the rank(M(r, p)), equation (7), corresponding to the Hamiltonian functionsH , H1 andH2,
equations (1)–(3), is invariant under the discrete transformation(x, y, z, px , py , pz) → (x,
y, −z, px , py , −pz) while the Hamiltonian functions transform as(H , H1, H2) → (H ,
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Figure 7. The same as in figure 6 but for the critical point from the curveθ−
2 .

H1, −H2). Therefore the setsQ, Qr andQcr are all symmetric under transformation(E,
C1, C2) → (E, C1, −C2). In figures 11(a)–(e) we give (for fs = 2.67) five plots, each
representing one class of topologically different intersections ofQ with C2 planes. The
shaded regions in figures 11(a)–(e) do not belong toQ.

From figures 11(a)-(e) we see that the open setQr of regular points is not connected, it
consists of two open connected components, i.e.Qr = Q1

⋃
Q2, one of which,Q2, is not

simply connected. As in the two-dimensional case, the set of critical pointsQcr decomposes,
into several subsets of different dimensions. We distinguish four two-dimensional subsets—
surfaces:σ+, σ−, ε+ and ε−, 10 one-dimensional subsets—curves:θ−

1 , θ−
2 , θ+

1 , θ+
2 , θ+

3 ,
θ+

4 , µ, ν, α andβ, and three pointsF+, F− andG. This decomposition is dictated by the
topological structure of level sets, i.e. the level sets that correspond to the critical points of
the same set are mutually diffeomorphic. Analogously, the level sets of the regular points
which belong to the same connected componentQ1 or Q2 are mutually diffeomorphic.
From figure 11(a) we see that the two pointsF+, F− and the six curvesθ−

1 , θ−
2 , θ+

1 , θ+
2 ,

θ+
3 and θ+

4 which all lie in theC2 = 0 plane are the same as those in figure 1(a), only
now the corresponding level sets are different. On the other hand, the other three curves
from figure 1(a) ε+, ε−

1 andε−
2 are not distinguished any more, they are just subsets of the

surfacesε+, ε− ⊂ Qcr .

4.2. Level sets of regular points

In contrast with the two-dimensional case, now only two three-parameter families of three-
dimensional tori, denoted byw1 and w2, foliate the phase-space. The regular setQ1

corresponds to both families. Similarly tow′
1, the family of tori w1 is ‘bounded’ by the

critical surfacesσ+, σ−, ε+ and the critical curvesθ+
1 and θ−

1 . On the other hand, the
family of tori w2 can be extended (similarly tow′

2) across the critical surfaceσ− and curve
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Figure 8. The level set of the regular point from the setQ′
3 for the casefs = 2.67. Two tori

are identified. (a) The location of the regular point. (b) The SOS of the level set defined with
u = 0. (b) The SOS of the level set defined withv = 0. (c) The projection, on theu–v plane,
of the invariant toriw′

3.

θ−
1 into the open regular setQ2. Therefore,Q2 corresponds to the single family of toriw2.

Two families of toriw1 andw2 ‘meet’ at the critical surfaceε+ and form separatrices.
The relation between the tori of the three-dimensional system with those of the reduced

two-dimensional system is now described. The intersections of the tori from the families
w1 and w2, which correspond to regular points fromQ1 and for whichC2 = 0, with the
four-dimensional planez = 0, pz = 0 give two-dimensional invariant tori from familiesw′

1
andw′

2. From figure 11(a) we see that the intersection of the setQ2 with the planeC2 = 0
decomposes into three disjoint open subsets which correspond to three regular setsQ′

2, Q′
3

andQ′
4 in figure 1(a). Consider now the intersection of the torus from the familyw2, which

corresponds to the regular point fromQ2 and for whichC2 = 0, with the four-dimensional
plane z = 0, pz = 0. If the regular point belongs toQ′

2 or Q′
3 the intersection gives

two-dimensional invariant torus from the familyw′
2 or w′

3. If the point belongs toQ′
4 the

intersection gives two two-dimensional tori, one belonging to the familyw′
3 and another to

w′
4.

Let W1 and W2 denote the unions of the tori from familiesw1 and w2, respectively.
By definition they are open (3n-dimensional) subsets of the phase-space foliated by the
corresponding families of tori. We see that because of the critical curvesθ−

2 , θ+
3 , θ+

4 and
β the regular setQ2 is not simply connected and therefore also the setW2 is not simply
connected. On the other hand, the setsQ1 andW1 are topologically trivial (i.e. diffeomorphic
to R3 andR6 respectively). One of the consequences of this fact is that the family of tori
W1 admits the so-called global action-angle variables (Cushman and Dustermaat 1988) while
such coordinates cannot be defined for the family of toriW2.
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Figure 9. The same as in figure 8 but for the critical point from curveθ+
4 , (b), (d), and for

regular point fromQ′
4, (c), (e).

4.3. Level sets of critical pointsF±

The critical pointsF+ andF− correspond to only two (unstable) fixed points (denoted also
by F±) of all Hamiltonian functionsH , H1 and H2, i.e. to zero-dimensional orbits of the
groupg. Their locations in the phase-space are given by equations (11), (12) andzF± = 0,
pzF± = 0, while the corresponding values of the Hamiltonian functionsH , H1 andH2 are
given by equation (13) andC2F± = 0.

The easiest way to construct corresponding level sets is to act with the groupgt
2 on

the level sets of two-dimensional systems which correspond to pointsF+ and F−, see
figures 2(c) and 3(d). It appears that not onlyF+ but also all points in figures 2(c) are fixed
under the action of the groupgt

2, i.e. under the motion of the Hamiltonian functionH2.
Therefore, the level set of the critical pointF+ in the three-dimensional case coincides with
that of the reduced two-dimensional system, i.e. it consists of one zero-dimensional orbit
of the groupg—unstable fixed pointF+ and two (noncompact) one-dimensional (critical)
orbits of the groupg diffeomorphic toR.

On the other hand, the periodic orbit of the reduced system which belongs to the
level set of the critical pointF−, figure 3(d), is not invariant under the action of the
group gt

2. The corresponding level set of the three-dimensional system is connected and
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Figure 10. The same as in figure 6 but for the critical point from the curveθ+
3 .

consists of one zero-dimensional orbit of the groupg—the unstable fixed pointF− and
one (noncompact) two-dimensional (critical) orbit of the groupg diffeomorphic to the two-
dimensional cylinder. The level sets of critical pointsF± are, at the same time, stable and
unstable manifolds of the corresponding fixed points.

4.4. Level sets of critical curvesθ±
i

The level sets of the critical points which belong to six curvesθ−
1 , θ−

2 , θ+
1 , θ+

2 , θ+
3 and

θ+
4 contain one-dimensional critical orbits of the groupg diffeomorphic to circles; they are

periodic orbits of the Hamiltonian functionH . These periodic orbits are in fact those of the
reduced two-dimensional system defined in the previous section, see equations (14)–(17),
i.e. they lie in thez = 0, pz = 0 plane. This follows from the fact that the phase-space
points belonging to these orbits are all fixed points of the groupgt

2, i.e. of H2. Direct
calculation shows that these are the only fixed points ofH2. This means that the level
sets of critical points from curvesθ+

1 andθ+
2 are the same as in the two-dimensional case,

figures 2(b) and 3(b), i.e. they consist of stable periodic orbits (one-dimensional critical
orbits of the groupg).

Recall that, in the case of the reduced system, the level set of each point from the critical
curveθ−

1 contains, besides the stable periodic orbit, two-dimensional torus of the familyw′
2,

figures 5(b) and (d). The action of the groupgt
2 on this torus generates the corresponding

three-dimensional invariant torus of the familyw2. Hence, the level set of each critical
point from the curveθ−

1 is disconnected, it consists of one one-dimensional critical orbit of
the groupg—stable periodic orbit ofH , and one three-dimensional orbit—torus from the
family w2.

Consider now the level set of any given point from the critical curveθ+
4 . Here, the level

set of the reduced system contains, besides the stable periodic orbit, two-dimensional torus,
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Figure 11. The intersections of the setQ and variousC2 planes for the casefs = 2.67. (a)
C2 = 0, (b) |C2| = 0.5, (c) |C2| = 1.5, (d)|C2| = C2G = 2.352, and (e) |C2| = 3.

now from the familyw′
3, see figure 9(d), and again the periodic orbit is invariant under the

action of the groupgt
2. However, the action of the groupgt

2 on the torus (of the familyw′
3)

generates not a three-dimensional torus, but rather a three-dimensional noncompact orbit of
the groupg, which is diffeomorphic to the direct product of the two-dimensional torus and
the real line (see equation (8)). The whole level set is connected and compact, and can be
viewed as a compactification of noncompact three-dimensional orbit. The periodic orbit, is
now unstable (in two-dimensional case it was stable) and the level set is its unstable and
stable manifold.

Recall that the level sets of the reduced system corresponding to the points from the
curvesθ−

2 andθ+
3 have different structures than those of the points from the curveθ+

4 , they
are separatrices, see figures (7) and (10). Nevertheless, it appears that the action of the
group gt

2 on two-dimensional cylinders that belong to separatrices generates noncompact
three-dimensional orbits of the same structure as described above. Therefore, in the three-
dimensional case the level sets of points from the curvesθ−

2 andθ+
3 have the same structures

as those of the points from the curveθ+
4 , i.e. each such level set is connected and consists of

one one-dimensional orbit of the groupg (unstable periodic orbit ofH ), and one noncompact
three-dimensional orbit of the groupg diffeomorphic to the direct product of the two-
dimensional torus and the real line.

In the case of critical curvesµ, ν and β and the pointG (see figures 11(a)–(d)), the
level set corresponding to each point from them contains one closed one-dimensional critical
orbit of g—the periodic orbit of all Hamiltonian functionsH , H1 andH2. It appears that
each such periodic orbit intersects the (five-dimensional) planez = 0 of the phase-spaceP
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Figure 12. The plots of the critical curvesµ andν for the casefs = 2.67. (a) Projection on
the E–C1 plane. (b) Projection on theE–C2 plane. (c) Projection on theC1–C2 plane.

in exactly two points. Let(ρ, φ, 0, pρ, pφ, pz) be the cylindrical coordinates of one of these
intersecting points, then the coordinates of the other point are(ρ, −φ, 0, −pρ, pφ, −pz).
The coordinates of these intersecting points of periodic orbits corresponding to all critical
curvesµ, ν, β and the pointG satisfy the following equations:

pφ = ρ2 pρ = 2
3ρ tanφ p2

z = ρ( 4
9ρ − fs cosφ) tan2 φ (22)

while the corresponding values of the Hamiltonian functions are determined by:

E = 4

9

ρ2

cos2 φ
− 8

9
ρ2 − 1

2
fs

ρ

cosφ
+ 3

2
fsρ cosφ − 1

ρ
(23)

C1 = 3

2
f 2

s ρ2 cos2 φ + fs

(
1 + 14

9
ρ3

)
cosφ + 3

2
f 2

s ρ2 − 4

3
ρ − 8

27
ρ42fs

ρ3

cosφ
+ 16

27

ρ4

cos2 φ

(24)

C2 = 3
2p3

z cotφ. (25)

In addition, for the critical curveβ it holds that

cosφ = − 9
4fsρ

2 + (
81
16f

2
s ρ4 + 9ρ3 − 4ρ6

)1/2

2
(

9
4 − ρ3

) > 0 0 < ρ < ρmax

ρmax = ( 9
4)1/3 if fs > ( 4

9)2/3 ρmax = r− if fs < ( 4
9)2/3

(26)

while for the curvesµ andν and for the pointG one has

cosφ = − 9
4fsρ

2 − (
81
16f

2
s ρ4 + 9ρ3 − 4ρ6

)1/2

2( 9
4 − ρ3)

< 0 0 < ρ < r+. (27)

Using equations (22), (27) and (25),|C2| becomes a function ofρ. This function has an
absolute maximum, and the point at which the maximum is reached corresponds to the
critical point G, i.e. max(|C2(ρ)|) = |C2(ρG)| = C2G, while the critical curvesν and µ

correspond to the following ranges of the coordinateρ in equations (22)–(25) and (27)

0 < ρ < ρG for ν ρG < ρ < r+ for µ. (28)

In figure 12 we give the plots of the critical curvesµ andν, while in figure 13 we give the
plots of the critical curveβ, again for the casefs = 2.67.
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Figure 13. The same as in figure 12 but for the critical curveβ.

Figure 14. The plots of the unstable periodic orbit corresponding to the critical point from the
curveβ for which E1 = 7.78, C1 = −0.35, C2 = 0.13 andfs = 2.67. (a) The projection on
the configurational spacex–y–z. (b) The projection on the planex–y. (c) The projection on
the planex–z. (d) The projection on the planez–pz.

From the above equations one finds for the curveβ that if ρ → 0 thenE → +∞,
C1 → 0 and |C2| → 1. Also whenρ → ρmax the critical curveβ hasB or F− as the
limiting point (see figure 13) depending on whetherfs > ( 4

9)2/3 or fs < ( 4
9)2/3. For ν one

finds that ifρ → 0 thenE → −∞, C1 → 0 and|C2| → 1. Also whenρ → r+ the curve
µ hasF+ as the limiting point, see figure 12.

One way to construct a critical periodic orbit is to act on one of its intersecting points
with the planez = 0 (defined with the equations (22) and (26) or (27)) with any of the
groupsgt

1, gt
2 or gt

3. As an example we have given in figure 14 the plots of the periodic
orbit corresponding to one of the critical points from the curveβ.

We shall consider the level sets, corresponding to the critical curvesµ and ν and the
point G, together with the level sets of the critical surfaces. As for the curveβ, the level
sets of its points have the same structure as the level sets corresponding to critical curves
θ−

2 , θ+
3 and θ+

4 . Each such level set is connected and compact and, besides the critical
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one-dimensional orbit—unstable periodic orbit ofH , see figure 14, contains only one three-
dimensional orbit of the groupg, which is therefore diffeomorphic to the direct product of
the two-dimensional torus and the real line.

4.5. Level sets of critical surfacesσ±, ε±

The familiesw1 and w2 of three-dimensional tori (corresponding toQ1) have nested in
such a way that they encircle two-dimensional orbits (tori) of the groupg that correspond
to the critical surfaceσ+. Thereforeσ+ corresponds to two two-parameter families of two-
dimensional stable invariant tori which we denote withw′′

1 and w′′
2. The tori from family

w′′
1 are nested themselves and they encircle one-dimensional orbits of the groupg which

correspond to the critical curveν. At the same time the family of toriw′′
2 continiously

extends into the critical surfaceε−. Therefore, the level set of each point from the critical
curveν is disconnected and contains one stable periodic orbit (of the Hamiltonian function
H ) and one stable two-dimensional torus of the familyw′′

2, while the level set of each point
from surfaceε− contains exactly one stable two-dimensional torus from familyw′′

2. (Recall
that in the case of the two-dimensional reduced system of the previous section, the level set
of each point from the critical curveε−

2 consists of two stable periodic orbits, see figure 3(c).
Obviously, these two periodic orbits are obtained by intersecting the corresponding torus
from family w′′

2 with the planez = 0, pz = 0, and the action of the groupgt
2 on any of the

periodic orbits generates the torus.)
The familiesw′′

1 andw′′
2 ‘meet’ along the critical curveµ to form a (two-dimensional)

separatrix—the level sets which consist of one one-dimensional orbit of the group
g—unstable periodic orbit (ofH ) and of two two-dimensional orbits of the groupg
diffeomorphic to cylinders.

From the structure of the level sets corresponding to the critical points fromσ+, ε−, ν

andµ one concludes that the level set of the critical pointG contains one one-dimensional
orbit of the groupg—unstable periodic orbit ofH , and one two-dimensional orbit ofg
diffeomorphic to cylinder.

The critical surfaceσ− corresponds to yet another two-parameter family of two-
dimensional tori which we denote withw′′′

1 . Again, the three-dimensional tori from the
family w1 are nested in such a way that they encircle two-dimensional tori fromw′′′

1 , while
the family of tori w2 continiously extends across the surfaceσ− into regular setQ2. The
level set of each point from that surface is disconnected and contains one two-dimensional
orbit of the groupg—stable invariant torus from the familyw′′′

1 , and one three-dimensional
orbit of g—invariant torus from the familyw2.

Two families of tori w1 and w2 ‘meet’ at the critical surfaceε+ to form separatrices.
The level set of each point from that critical surface is connected and contains one two-
dimensional orbit of the groupg—unstable invariant two-dimensional torus ofH , and two
three-dimensional orbits of the groupg both diffeomorphic to the direct product of the
two-dimensional torus and the real line. Clearly this level set also represents stable and
unstable manifolds of the corresponding invariant unstable two-dimensional torus.

Finally, from the structure of the level sets corresponding to the points from the critical
surfacesε+ and σ−, it immediately follows that the level set of each point from curveα

consists of one two-dimensional orbit of the groupg—unstable two-dimensional torus of
H , and of one three-dimensional orbit of the groupg which is diffeomorphic to the direct
product of the two-dimensional torus and the real line.

We conclude this subsection with the analytical formulae for the calculation of the
critical surfaces. We have just seen that the level sets of critical points for whichC2 6= 0
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(and which do not belong to the curveβ) contain certain two-dimensional critical orbits
of the groupg. It appears that each of these critical two-dimensional orbits intersects
four-dimensional surfaces defined with the equations (in cylindrical coordinates)

z = 0 p2
ρ − 3

2fspρ sinφ − p2
z = 0 (29)

in a finite number of points. LetX ⊂ P be the set of all these intersecting points. One can
show that all the phase-space points which belong toX satisfy, besides above, the following
relations:

pφ sinφ − 2pρρ cosφ + 1
3ρ2 sinφ = 0 (30)

3pρ cosφ − 2ρ sinφ 6= 0 pρ − 3
2fs sinφ 6= 0 pz 6= 0 (31)

a4(ρ, φ)p4
ρ + a3(ρ, φ)p3

ρ + a2(ρ, φ)p2
ρ + a1(ρ, φ)pρ + a0(ρ, φ) = 0 (32)

where

a4(ρ, φ) = ρ2(1 + 4 cos2 φ + 3 cos4 φa3(ρ, φ)

= − 4
3ρ3 sinφ cosφ(1 + cos2 φ)

−3fsρ
2 sinφ(1 + 3

2 cos2 φ − 1
2 cos4 φ), a2(ρ, φ)

= − 2fsρ
3 sin2 φ cos3 φ + 9

4f 2
s ρ2 sin4 φ − 2ρ sin2 φ(1 + 2 cos2 φ), a1(ρ, φ)

= 2
3fsρ

4 sin3 φ(1 + cos2 φ) + 3f 2
s ρ3 sin3 φ cosφ

+ 4
3ρ2 sin3 φ cosφ + 3fsρ sin3 φ, a0(ρ, φ)

= sin4 φ(−f 2
s ρ4 + 1).

In other words, the level set of any critical point for whichC2 6= 0 (and which does not
belong toβ) contains at least one point from the setX. Therefore, the energy-momentum
map corresponding to three Hamiltonian functions, equations (1)–(3), maps the subsetX of
the phase-spaceP onto the set of all critical points which belong to the surfacesσ+, σ−,
ε+, ε− and the curvesµ andν.

5. Application to hydrogen atoms in external fields

We now briefly discuss the relationship between our integrable system and some important
physical systems of current interest. Recall that the Hamiltonian function (in atomic units)
of the hydrogen atom in the CP fieldHcir = p2/2 − 1/r + f (x cosωt + y sinωt), takes,
in the frame rotating around thez-axis together with the field, the time-independent form
(Chu (1978))

Hcir = p2

2
− 1

r
− ωlz + f x (33)

wheref andω are the amplitude and the frequency of the applied field, respectively. The
Hamiltonian function of the hydrogen atom in crossed magnetic and electric fields reads

Hcross= p2

2
− 1

r
+ γ

2
lz + f x + γ 2

8
(x2 + y2) (34)

whereγ andf are the strengths of the magnetic and electric fields, respectively. The above
two systems have recently been studied (ionization process, oscillator strengths, transition
to chaos,. . . ) both experimentally [Bellermannet al (1994), Fuet al (1990), Wiebuschet
al (1989)] and theoretically [Farrelly and Uzer (1995), Gourlayet al (1993), Marxeret al
(1994), Milczewskiet al (1994), Uzer and Farrelly (1995)].
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From equations (1), (33) and (34) we see that the Hamiltonian functionsHcir and
Hcross differ from that of the integrable systemH only by a term proportional toω2 (in
equation (34) we identifyγ = −2ω). Therefore, for small enoughω (as is the case
in the microwave ionization experiments, Fuet al (1990)), one can try to useH as an
approximation forHcir and Hcross. Simple analysis of the equations of motion generated
with the functionsHcir andHcross shows that the trajectories of these systems which are not
located in the vicinity of nucleus are unbounded, while we have seen in section 4 that the
Hamiltonian functionH generates only bounded trajectories. However, the Hamiltonian
functionsHcir and Hcross do generate bounded trajectories in the vicinity of the nucleus,
and let Wcir and Wcross denote the regions of the phase-space filled with these bounded
trajectories. Since the Hamiltonian functionsHcir and Hcross are not integrable, among
bounded trajectories always exist irregular (chaotic) trajectories intertwining with regular
trajectories. According to KAM theorem, Arnol’d (1978), the measure in the phase-space
of the chaotic trajectories is proportional to the perturbational parameter. Now, it has
been observed that for smallω, but already in a nonperturbative regime where most of the
KAM–tori should break, the majority of bounded trajectories are still regular, i.e. they are
confined to invariant three-dimensional tori. The existence of these invariant tori can be
explained with the approximate integrals of motion which we recognize in the functions of
equations (2) and (3).

From the above consideration we see that only those trajectories of the integrable system
equation (1) which are located close to nucleus, i.e. which lie in open setW1 (see section 4),
can serve as approximations for the trajectories ofHcir andHcross. Indeed, for small enough
ω, one can establish the correspondance between the invariant tori from the familyw1 and
the invariant tori ofHcir andHcross, and in addition the open setW1 can be used as a very
good approximation for the regionsWcir andWcross.

There is another interesting realistic system which is even more closely related to our
integrable case. Consider the hydrogen atom in the presence of the CP field together with
the constant magnetic field orthogonal to the polarization plane. The Hamiltonian function
(again in the rotating frame) reads:

Hcir γ = p2

2
− 1

r
−

(
ω − γ

2

)
lz + f x + γ 2

8
(x2 + y2). (35)

This system, especially its two-dimensional planar variant (z = 0, pz = 0) has recently been
studied in connection with the nondispersive wavepackets and atomic traps [Brunelloet al
(1996), Farrellyet al (1995), Leeet al (1995)]. Note that for the two-dimensional motion
in the z-plane and in the special case when(ω − γ /2)2/18 = γ 2/8 (i.e. ω = γ /2 ± 3γ /2)
the above Hamiltonian function reduces, after rescaling, to our two-dimensional caseH ′,
equation (9).

The discussion in this section suggests that the integrable system of equation (1) may
be used in the study of the above mentioned more realistic systems. So far, we have
applied the integrable system only in the calculation of the classical threshold fields for
the ionization of the highly excited states of hydrogen atom by CP microwave fields in
the two-dimensional [Raković and Chu (1994)] and three-dimensional [Raković and Chu
(1995b)] cases. Excellent agreement with the experimental results [Bellermannet al (1994),
Fu et al (1990)] has been achieved. Possible application of the integrable system to the
other two realistic cases is currently under investigation
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